If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = y2 + -12y + 64 Reorder the terms: 0 = 64 + -12y + y2 Solving 0 = 64 + -12y + y2 Solving for variable 'y'. Combine like terms: 0 + -64 = -64 -64 + 12y + -1y2 = 64 + -12y + y2 + -64 + 12y + -1y2 Reorder the terms: -64 + 12y + -1y2 = 64 + -64 + -12y + 12y + y2 + -1y2 Combine like terms: 64 + -64 = 0 -64 + 12y + -1y2 = 0 + -12y + 12y + y2 + -1y2 -64 + 12y + -1y2 = -12y + 12y + y2 + -1y2 Combine like terms: -12y + 12y = 0 -64 + 12y + -1y2 = 0 + y2 + -1y2 -64 + 12y + -1y2 = y2 + -1y2 Combine like terms: y2 + -1y2 = 0 -64 + 12y + -1y2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. 64 + -12y + y2 = 0 Move the constant term to the right: Add '-64' to each side of the equation. 64 + -12y + -64 + y2 = 0 + -64 Reorder the terms: 64 + -64 + -12y + y2 = 0 + -64 Combine like terms: 64 + -64 = 0 0 + -12y + y2 = 0 + -64 -12y + y2 = 0 + -64 Combine like terms: 0 + -64 = -64 -12y + y2 = -64 The y term is -12y. Take half its coefficient (-6). Square it (36) and add it to both sides. Add '36' to each side of the equation. -12y + 36 + y2 = -64 + 36 Reorder the terms: 36 + -12y + y2 = -64 + 36 Combine like terms: -64 + 36 = -28 36 + -12y + y2 = -28 Factor a perfect square on the left side: (y + -6)(y + -6) = -28 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2k^3+5k^2+3k=0 | | 3b^2+16b-12=0 | | 128=2+3x | | -24-n=-50 | | -x-8y=2 | | 4x-(2-3x)+5=0 | | 7y+9=51 | | 11(x-3)=4x-23 | | 7m=40-3 | | 2(-6b-6)=7-7(7b+8) | | 8x^3-62x+15=0 | | 6(4x-1)+2=12(2x+3) | | 4x^2+18=96y | | (x^2+x+1)*(x^2+x+2)=12 | | 4(2x-3)+8=-6(x+3) | | n*n-7=19 | | -2(71y)+4=-4 | | (3x-4)(5x+2)(-3x-4)(-3+2x)=0 | | (3x-4)(5x+2)=(3x-4)(3-2x) | | 5(2x-3)-(5x+1)=0 | | 23x-1=12x-100 | | 4.8(x-4)=-0.2+15.8 | | 5x^2-28=0 | | 7.39x+36.95=73.9 | | x^3=x^2-2x+2 | | .14287514(x-35)=.86 | | 2x-b=10 | | 72a-16=32a+4 | | 6.2x+62=124 | | Sin^2(x)+sin(2x)-1=0 | | cos(2x)-sin(5x)=0 | | 19(a+6)=21a |